Abstract

An outbreak of enzootic ataxia among sheep raised in the northeastern region of Brazil is described. Copper (Cu) deficiency was diagnosed in a herd of 56 sheep, among which five presented characteristic clinical symptoms of enzootic ataxia. The symptoms began 30 days after birth, with a clinical condition that included locomotion difficulty, limb ataxia, tremors, and continual falls. Liver biopsies were performed and blood was collected to determine hepatic and plasmatic Cu, iron (Fe), and zinc (Zn) concentration, respectively. The laboratory results showed that the animals presented low copper concentrations in the plasma and liver, without difference between the clinically healthy animals and those affected by enzootic ataxia. Even after supplementation with adequate Cu levels had been recommended, it was found on a new visit to the farm four months later that one animal still presented a clinical condition and that the hepatic Cu levels of the herd had not risen. Despite the low copper content of the diet, the high hepatic Fe levels found suggest that antagonism due to this element may have been an important factor in triggering copper deficiency in these animals, and thus, additional copper supplementation may be necessary for these animals.

Highlights

  • IntroductionCu is an essential microelement that presents a variety of functions in animal organisms

  • Among the minerals, Cu is an essential microelement that presents a variety of functions in animal organisms

  • It has been well established that changes to iron intake may influence Cu metabolism in animals, little importance has been attributed to Fe as a cause of Cu deficiency in ruminants under conditions of extensive rearing [6]

Read more

Summary

Introduction

Cu is an essential microelement that presents a variety of functions in animal organisms. It plays a part in the active center of more than 20 metalloenzymes, cofactors, and metalloproteins that are connected with destruction of free radicals, synthesis of connective tissues, formation of myelin and bones, pigmentation and formation of fur and wool. It acts indirectly in hematopoiesis [1, 2]. In northeastern Brazil, it is believed that at times of food scarcity, the greatest source of iron intake is the soil, since the animals start to graze down closer to the ground and ingest large quantities of soil, which is rich in iron [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call