Abstract
Copper deficiency is associated with impaired brain development and mitochondrial dysfunction. Perinatal copper deficiency was produced in Holtzman rats. In vivo proton NMR spectroscopy was used to quantify 18 cerebellar and hippocampal metabolites on postnatal day 21 (P21). Copper status was evaluated in male copper-adequate (CuA) and copper-deficient (CuD) brothers at P19 and at P23, 2 days following NMR experiments, by metal and in vitro metabolite data. Compared to CuA pups, CuD pups had lower ascorbate concentration in both brain regions, confirming prior HPLC data. Both regions of CuD rats also had lower N-acetylaspartate levels consistent with delayed development or impaired mitochondrial function similar to prior work demonstrating elevated lactate and citrate. For other metabolites, the P21 neurochemical profile of CuD rats was remarkably similar to CuA rats but uniquely different from iron-deficient or chronic hypoxia models. Further research is needed to determine the neurochemical consequences of copper deficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.