Abstract

Hospital acquired infections (HAIs) and the emergence of antibiotic resistant strains are major threats to human health. Copper is well known for its high antimicrobial efficacy, including the ability to kill superbugs and the notorious ESKAPE group of pathogens. We sought a material that maintains the antimicrobial efficacy of copper while minimizing the downsides – cost, appearance and metallic properties – that limit application. Here we describe a copper-glass ceramic powder as an additive for antimicrobial surfaces; its mechanism is based on the controlled release of copper (I) ions (Cu1+) from cuprite nanocrystals that form in situ in the water labile phase of the biphasic glass ceramic. Latex paints containing copper-glass ceramic powder exhibit ≥99.9% reduction in S. aureus, P. aeruginosa, K. aerogenes and E. Coli colony counts when evaluated by the US EPA test method for efficacy of copper-alloy surfaces as sanitizer, approaching that of benchmark metallic copper.

Highlights

  • Hospital acquired infections (HAIs) and the emergence of antibiotic resistant strains are major threats to human health

  • While good hygiene practices are the bedrock for infection control, emerging evidence suggests that continuously killing antimicrobial surfaces based on metallic copper can reduce bioburden and lower the risk of infection[3]

  • Paint coatings containing the copper–glass ceramic powder exhibit ≥99.9% reduction in S. aureus, P. aeruginosa, K. aerogenes, and E. coli colony counts using the US EPA test method

Read more

Summary

Introduction

Hospital acquired infections (HAIs) and the emergence of antibiotic resistant strains are major threats to human health. We describe an alkali copper aluminoborophosphosilicate glass ceramic material that acts as a sustainable delivery system for Cu +1 ions with high antimicrobial efficacy. Paint coatings containing the copper–glass ceramic powder exhibit ≥99.9% reduction in S. aureus, P. aeruginosa, K. aerogenes, and E. coli colony counts using the US EPA test method.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.