Abstract

Copper chemical vapor deposition using Cu-hexafluoroacetylacetonate (hfac) trimethylvinylsilane (TMVS) as precursor was performed in a cold-wall low pressure chemical vapor deposition (CVD) reactor. The design and operation of the reactor are described. Copper deposition on thermal SiO2, W, and CoSi2 substrate surfaces was investigated over the temperature range of 160–300°C and pressure range of 10–1000 mTorr. The activation energies of Cu CVD were determined to be 13.33 and 11.54 kcal/mole for the W and CoSi2 substrates, respectively. The dependence of film resistivity, grain size, and growth rate on deposition pressure and temperature were also investigated. The film uniformity was found to be better than ten percent over a 4-inch diameter substrate. Experimental results also show that selective deposition can be achieved at a pressure of 10 mTorr within the temperature range of 160–200°C. In addition, hydrofluoric acid dipping was found to modify the SiO2 surface and influence the copper deposition on it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call