Abstract
We report a copper-catalyzed regio-, diastereo-, and enantioselective allylic alkylation of allyl bromides using 1,1-diborylalkanes as prochiral nucleophiles. This methodology employs copper(I) bromide as a catalyst, an (R)-BINOL-derived phosphoramidite as a ligand, and lithium benzoate as a crucial additive. The reaction affords enantioenriched homoallylic boronic esters possessing vicinal stereocenters in good yields and high diastereo- and enantioselectivity. The developed method demonstrates a broad substrate scope with respect to a wide range of 1,1-diborylalkanes and allyl bromides. Mechanistic studies, including deuterium-labeling experiments and DFT calculations, provide insights into the reaction pathway and the origin of the stereoselectivity. The synthetic utility of this method is showcased through various transformations of the obtained enantioenriched homoallylic boronic esters into valuable chiral building blocks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.