Abstract
Highly functionalized organic molecules are in high demand, but their preparation is challenging. Copper-catalyzed transformation of alkynyl- and allenyl-containing substrates has emerged as a powerful tool to achieve this objective. Herein, an efficient copper-catalyzed difunctionalization of propargylic carbonates through tandem nucleophilic substitution/boroprotonation has been developed, affording the formation of thiol-, selenium-, and boron-functionalized alkenes with high yield and stereoselectivity. Two distinct catalytic mechanisms involving a single reaction without any requirement of catalyst change were successfully demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.