Abstract

Herein, the copper‐catalyzed borylation of readily available acyl chlorides with bis(pinacolato)diboron, (B2pin2) or bis(neopentane glycolato)diboron (B2neop2) is reported, which provides stable potassium acyltrifluoroborates (KATs) in good yields from the acylboronate esters. A variety of functional groups are tolerated under the mild reaction conditions (room temperature) and substrates containing different carbon‐skeletons, such as aryl, heteroaryl and primary, secondary, tertiary alkyl are applicable. Acyl N‐methyliminodiacetic acid (MIDA) boronates can also been accessed by modification of the workup procedures. This process is scalable and also amenable to the late‐stage conversion of carboxylic acid‐containing drugs into their acylboron analogues, which have been challenging to prepare previously. A catalytic mechanism is proposed based on in situ monitoring of the reaction between p‐toluoyl chloride and an NHC‐copper(I) boryl complex as well as the isolation of an unusual lithium acylBpinOBpin compound as a key intermediate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.