Abstract
The chirality, or ‘handedness’, of a biologically active molecule can alter its physiological properties. For this reason, it is routine procedure in the drug discovery and development process to prepare and fully characterize all possible stereoisomers of a drug candidate for biological evaluation1,2. Despite many recent advances in asymmetric synthesis, the development of general and practical strategies to obtain all possible stereoisomers of an organic compound bearing multiple contiguous stereocenters remains a significant challenge3. In this manuscript, we report a stereodivergent copper-based approach for the expeditious construction of amino alcohols with high levels of chemo-, regio-, diastereo- and enantioselectivity. Specifically, these amino alcohol products were synthesized using the sequential copper hydride-catalyzed hydrosilylation and hydroamination of readily available enals and enones. This strategy provides a route to all possible stereoisomers of the amino alcohol products, which contain up to three contiguous stereocenters. Catalyst control and stereospecificity were simultaneously leveraged to attain exceptional control of the product stereochemistry. Beyond the utility of this protocol, the strategy demonstrated here should inspire the development of methods providing complete sets of stereoisomers for other valuable synthetic targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.