Abstract

This review deals with copper complexes of a variety of organic and bioorganic molecules that have been produced as gas-phase ions by electrospray and other ionization methods and studied experimentally by mass spectrometry and theoretically by ab initio and density functional theory computations. Ternary complexes of Cu((II)) allow one to modify the oxidation state and coordination sphere of the copper ion and thus induce novel fragmentations that involve redox and radical-based reactions. Structure elucidation, distinction, and quantitation of leucine and isoleucine isomers in peptides, distinction of enantiomers in chiral compounds, and sensitive detection of antibiotics are some of the highlights of mass spectrometry of ternary copper complexes. Binary copper complexes are mainly represented by Cu((I)) species in which the copper ion displays the properties of a weak Lewis acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.