Abstract

Despite numerous studies on microplastics (MPs), little attention has been paid to the dissolved organic substances leached from MPs and their environmental fate. In this study, we explored the copper-binding characteristics of MP-derived dissolved organic matter (MP-DOM) leached from several MP types, including commercial polypropylene, polyvinylchloride, and expanded polystyrene, under dark and UV irradiation conditions. The copper-binding affinity of MP-DOM was examined using fluorescence quenching method based on different fluorophores identified via the excitation emission matrix-parallel factor analysis (EEM-PARAFAC). The heterogeneous distribution of binding sites across the functional groups of MP-DOM was further elucidated by utilizing two-dimensional correlation spectroscopy (2D-COS) based on Fourier transform infrared spectroscopy (FTIR). Phenol/protein-like fluorescence prevailed in all MP-DOM samples, whereas humic-like fluorescence was more pronounced in the irradiated MP-DOM. For all tested plastic types, two plastic-derived fluorescent components (C2 and C3) exhibited substantial fluorescence quenching with increasing copper concentrations. The calculated stability constants showed larger differences between the two leaching conditions than between the three MP types with higher log KM values for the UV-irradiated (4.08–5.36) than dark-treated MP-DOM (1.05–3.60). The binding constants were comparable to those of natural organic matter with aquatic/terrestrial origins. The 2D-COS results further revealed that the oxygen-containing structures in MP-DOM generated by UV irradiation might be responsible for the higher binding affinity of the irradiated MP-DOM. This is the first study demonstrating the environmental reactivity of MP-DOM towards metal binding, highlighting the importance of leaching conditions for the metal-binding behavior of MP-DOM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.