Abstract

The prion protein is usually pictured as globular structured C-terminal domain that is linked to an extended flexible N-terminal tail. However, in its physiological form, it is a glycoprotein tethered to the cell surface via a C-terminal GPI anchor. The low solubility of PrP even without GPI anchor and its strong tendency for aggregation has forced most structural investigations to be performed at low pH and mostly with N-terminally truncated variants. In the present study, we have used a synthetic peptide related to the PrP tetra-octarepeat region, i.e., the sequence (Pro-His-Gly-Gly-Gly-Trp-Gly-Gln)(4), for NMR structural analysis of its preferred conformation in DPC micelles as membrane mimic. Well-defined and identical loops are observed between the four octarepeats that are linked by flexible Gly-Gly-Gly sequences. Interaction with the micelles is mainly through the tryptophan residues that appear to act as anchors. Copper binding to the peptide in the presence of DPC micelles revealed marked conformational rearrangements although binding to the micelles is preserved. Interestingly, titration experiments point to cooperative effects for the four binding sites. A destabilization of the DPC micelles by the peptide parallels the destabilizing effect of the prion protein on membranes so that the octarepeat region appears to be very membrane-active. How the physico-chemical properties reported here are linked to the function and significance of the prion protein remains a puzzle as long as the functional mechanism of the prion protein is not precisely elucidated. Nevertheless, our results emphasize the strong influence of the (membrane) environment on the PrP properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.