Abstract
AbstractMetal‐organic frameworks (MOFs) are precious resources for future demands in every realm of life. Currently, researchers are striving to create MOF materials with low dielectric constants for the microelectronic sector. In this work, a MOF compound, copper dimandelate (CuDM), is crystallized using the regulated diffusion of cations through viscous reactant media and its suitability for dielectric applications is studied for the first time. The crystallinity of the compound is confirmed and structural characterization is carried out using powder X‐ray diffraction measurements. The various functional groups present in the grown sample are confirmed by Fourier transform infrared and Raman analyses. Thermogravimetric analysis establishes the thermal stability of the material up to a temperature of 220 °C. The predicted chemical formula, (Cu[(C6H5) HOCH COO)]2) is verified by CHNS elemental analysis. The observed dielectric constant varies from 18.55 to 8.15 with applied frequency ranging from 0.01 Hz to 10 MHz, making it suitable for low‐k dielectric applications. The optical band gap and Urbach energy are obtained as 3.65 and 0.6211 eV, respectively, by UV–vis analysis. Solid‐state dielectric parameters, which include valence electron plasma energy, Penn gap, Fermi energy, electrical polarizability, and susceptibility of the material, are calculated using theoretical formulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.