Abstract

ABSTRACTForest gap in alpine forests may redistribute the hydrothermal conditions in winter and growing season, which may affect the releases of copper and zinc in foliar litter during decomposition. However, the details of this process are largely unknown. Foliar litters of willow (Salix paraplesia), larch (Larix mastersiana), fir (Abies faxoniana), azalea (Rhododendron lapponicum), birch (Betula albosinensis) and cypress (Sabina saltuaria) were selected in an alpine forest of eastern Tibetan Plateau. The litterbags were placed on the forest floor from gap center, canopy gap edge and expanded gap edge to closed canopy. Zinc and copper contents were studied as litter decomposition proceeded. After one year of decomposition, zinc accumulated in all foliar litters regardless of gap positions, but copper accumulated in the litters of fir, azalea and cypress. Separately, copper was released from all foliar litters in winter, whereas zinc in litters of larch, azalea, birch and cypress was released in winter. Moreover, both copper and zinc accumulated during the growing season regardless of litter species. Nevertheless, higher accumulation rates were observed under closed canopy compared with other gap positions. These results suggest that forest gap slows the releases of copper and zinc in foliar litter during forest regeneration in these cold biomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.