Abstract

Synthesis and characterization of copper-and-nitrogen-codoped zirconium titanate (Cu-N-ZrTiO4) as a photocatalyst for the degradation of methylene blue (MB) have been conducted. The main purpose of this research was to investigate the co-doping effect of copper and nitrogen dopants in ZrTiO4 as a photocatalyst for the photodegradation of MB. Titanium-(IV) tetraisopropoxide (TTIP) was dissolved into ethanol and mixed with aqueous zirconia (ZrO2) suspension containing 10% nitrogen (N) (w/w to Ti) from urea and various amount of copper as dopants. The calcination was performed at temperatures of 500, 700, and 900 °C. The composites were characterized using Fourier transform infrared spectrophotometer (FTIR), X-ray diffractometer (XRD), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) mapping, and specular reflectance UV-Visible spectrophotometer (SRUV-Vis). The degradation of 4 mg L−1 MB solution was conducted for various irradiation times. Characterization shows a significant decrease of the ZrTiO4 band gap from 3.09 to 2.65 eV, which was given by the composite with the addition of 4% Cu and calcination of 900 °C. Cu-N-ZrTiO4 composite can degrade MB solution up to 83% after 120 min under the irradiation of visible light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.