Abstract
Cu–N-codoped TiO2 photocatalyst is synthesized by sol–gel method to obtain enhanced optical absorption in the visible region. Optimum concentrations of Cu and N were obtained by maximizing the photocatalytic activity for the monodoped (Cu or N) TiO2. These optimized concentrations were used for synthesizing (Cu, N)–codoped TiO2. The photocatalysts were characterized using XRD, micro-Raman, SEM, XPS, BET surface area analyzer, UV–vis diffuse reflectance spectroscopy and photoluminescence. XPS study suggests the incorporation of Cu2+ into TiO2 lattice, which assists N to substitutionally replace oxygen in codoped TiO2, while maintaining the anatase phase even after doping. N-doping creates minor variation in the energy band gap of TiO2 reducing it upto 3.0eV, while Cu doping was able to narrow the band gap to 2.2eV mainly due to the localized levels of Cu-3d states and shifting of Ti-3d states to lower energy (due to oxygen vacancies) in the band-gap as deduced from XPS data and confirmed by the DFT calculation. In (Cu, N)–codoped TiO2, visible light absorption is higher than the other TiO2 samples, a feature that is mainly attributed to the formation of an isolated intermediate band (IB) occurring due to the strong hybridization between Cu 3d and N 2p orbitals. This IB contributes to visible light absorption by two step optical transition with the first transition from valence band (VB) to IB and the second from IB to conduction band (CB). The dopant species may also act to reduce the charge carrier recombination by acting as the trapping sites for photogenerated charges. (Cu, N)–codoped TiO2 was able to degrade Methylene Blue dye and p-Nitrophenol solution under light irradiation with significantly better rate in comparison to monodoped and undoped TiO2. High photocatalytic activity is attributed to the presence of IB in the energy band gap of TiO2, which creates the synergic effect by higher visible light absorption and lower recombination of photogenerated charges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.