Abstract
The consumption of electronic products has grown considerably in the last decades. These products become obsolete in a short period of time, generating electronic waste, which presents loads of materials harmful to health and metals of great value to industries. In this work, an innovative metal concentration technique for PCBs was applied aiming at the valuable metals recovery from ground printed circuit boards (PCBs) of computers that would be discarded. The PCBs were comminuted, classified by sieving and the metallic materials were processed in a zig-zag classifier type. The Schytil's phase diagram was developed to estimate the air flow rate to be used in the classifier. The product of each step was characterized. The copper content rose from 13.8% (w/w) to 48.8% (w/w) after the passage of the PCBs powder through the classifier. Its recovery and Newton's efficiency were above 89.4% and 0.91, respectively. The total content of metals was increased from 39.5% (w/w) to 89% (w/w) with a recovery of more than 82% and Newton's efficiency of 0.67 for the particle size in the range from 0.2 to 0.1mm. The gold content has increased from 200ppm to more than 8000ppm after segregation by a simple manual concentration. Results shown that the use of zig-zag classifier to separate and concentrate metals was fairly effective, do not generate liquid and gaseous effluents and eliminates a number of pyrometallurgical or hydrometallurgical steps for metals obtaining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.