Abstract

Copper–aluminum containing precursors with various Cu/Al molar ratios (from 0.32–1.28) were prepared by co-precipitation in the presence of ammonium carbonate. The thermal stability of the obtained materials was investigated by thermal analysis, which revealed three crucial decomposition steps, finally resulting in the formation of mixed Cu–Al oxides. The changes in structure and texture of the samples at each decomposition step were examined by X-ray diffraction (XRD), diffuse reflectance UV–vis spectroscopy (UV–vis-DRS) and low temperature sorption of nitrogen. It was found that the entire removal of structural carbonates requires a calcination temperature as high as 900 °C. The samples after thermal treatment at this temperature varied in the phase composition of the bulk (determined by XRD) as well as of the surface (determined by X-ray photoelectron spectroscopy). All samples contained the CuAl2O4 phase. Furthermore, an increase in Cu content led to the appearance of an increasing amount of CuO. Copper oxide in the form of relatively small crystallites turned out to be the catalytically active phase in the total oxidation of toluene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.