Abstract

This study presents an experimental approach to address sulfur-induced embrittlement in copper alloys. Building on recent theoretical insights, we identified specific solute elements, such as silicon and silver, known for their strong binding affinity with vacancies. Through experimental validation, we demonstrated the effectiveness of Si and Ag in preventing sulfur-induced embrittlement in copper, even though they are not typical sulfide formers such as zirconium. Additionally, our findings highlight the advantages of these elements over traditional solutes, such as their high solubility and propensity to accumulate along grain boundaries. This approach may have the potential to be applied to other metals prone to sulfur-induced embrittlement, including nickel, iron, and cobalt, offering broader implications for materials engineering strategies and alloy development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call