Abstract

We present a combined DFT and model Hamiltonian analysis of spin-orbit coupling in graphene induced by copper adatoms in the bridge and top positions, representing isolated atoms in the dilute limit. The orbital physics in both systems is found to be surprisingly similar, given the fundamental difference in the local symmetry. In both systems the Cu p and d contributions at the Fermi level are very similar. Based on the knowledge of orbital effects we identify that the main cause of the locally induced spin-orbit couplings are Cu p and d orbitals. By employing the DFT+U formalism as an analysis tool we find that both the p and d orbital contributions are equally important to spin-orbit coupling, although p contributions to the density of states are much higher. We fit the DFT data with phenomenological tight-binding models developed separately for the top and bridge positions. Our model Hamiltonians describe the low-energy electronic band structure in the whole Brillouin zone and allow us to extract the size of the spin-orbit interaction induced by the local Cu adatom to be in the tens of meV. By application of the phenomenological models to Green's function techniques, we find that copper atoms act as resonant impurities in graphene with large lifetimes of 50 and 100~fs for top and bridge, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.