Abstract

The importance of the antioxidant enzyme superoxide dismutase (CuZnSOD) in the metabolic switch from normotrophic to methylotrophic conditions was studied in the facultative methylotrophic yeast Candida boidinii. Copper adaptation was performed to qualify C. boidinii as a suitable cellular system to study the effect of induction of CuZnSOD, and other biochemical components along the copper detoxification system, on methanol adaptation. Copper adaptation results in the induction of CuZnSOD peroxidase activity as well as of glutathione. The effects at the metabolic level of exposure to both copper and methanol were also studied: the results suggest that the effect on antioxidant enzyme levels as a function of the change of trophic condition are predominant with respect to the effects of copper administration. Thus, the methanol-dependent induction of such enzymes is likely to provide a sufficient protection for the cells against toxic effects depending on copper administration. Administration of copper under methylotrophic conditions decreases the growth rate in spite of the high levels of antioxidant enzymes that are elicited by copper treatment. The adaptation to methanol metabolism was studied alsoafter methanol-independent induction of CuZnSOD, glutathione and catalase levels, obtained by exposure to high copper concentrations in glucose-containing medium. The metabolic changes induced by copper are persistent over several re-inoculations in normo-cupric glucose medium, thus allowing the study of the glucose-to-methanol switch on cells exhibiting high levels of antioxidant enzyme activities. Under such conditions the lag time observed during the transition from normotrophic to methylotrophic conditions is strongly reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.