Abstract
Astrocyte-rich primary cultures were used to investigate the consequences of a copper exposure on the glucose metabolism of astrocytes. After application of CuCl(2) (30μM) the specific cellular copper content increased from initial 1.5±0.2nmol/mg to a steady state level of 7.9±0.9nmol/mg within about 12h. The copper accumulation was accompanied by a significant increase in the extracellular lactate concentration. The stimulating effect of copper on the lactate production remained after removal of extracellular copper. Copper treatment accelerated the rates of both glucose consumption and lactate production by about 60%. The copper induced acceleration of glycolytic flux was prevented by inhibition of protein synthesis, and additive to the stimulation of glycolysis observed for inhibitors of respiration or prolyl hydroxylases. A copper induced stimulation of glycolytic flux in astrocytes could have severe consequences for the glucose metabolism of the brain in conditions of copper overload.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.