Abstract

We investigate the phase diagram of disordered copolymers at the interface between two selective solvents, and in particular its weak-coupling behavior, encoded in the slope mc of the critical line at the origin. We focus on the directed walk case, which has turned out to be, in spite of the apparent simplicity, extremely challenging. In mathematical terms, the partition function of such a model does not depend on all the details of the Markov chain that models the polymer, but only on the time elapsed between successive returns to zero and on whether the walk is in the upper or lower half plane between such returns. This observation leads to a natural generalization of the model, in terms of arbitrary laws of return times: the most interesting case being the one of return times with power law tails (with exponent 1+α, α=1/2 in the case of the symmetric random walk). The main results we present here are:

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.