Abstract
To improve the properties of poly(butylene succinate) (PBS), a series of poly[(butylene succinate)-co-poly(tetramethylene glycol)]s (PBSTMGs) with different poly(tetramethylene glycol) (PTMG) contents were successfully prepared by the catalyzed melt polycondensation process. The effect of introducing flexible PTMG segments on the properties was investigated, and they were compared to those of PBS. The differential scanning calorimetry results indicated that the melting temperature, crystallization temperature, and crystallinity of PBSTMG copolymers were slightly lower than those of PBS. Furthermore, these thermal parameters decreased gradually with the increase of PTMG content. Dynamic mechanical analysis showed that there was a significant decline of storage modulus (E′) in the overall temperature range of copolymers compared to that of PBS. The incorporation of PTMG did not modify the crystal lattice of PBS according to the wide-angle X-ray diffraction analysis. Because of copolymerization, the size of the spherulites was reduced at high PTMG contents. The soft domain in the copolymers might contribute to the enhanced tear strength of PBSTMG. The elongation at break and impact strength of PBSTMG copolymers were greatly improved as a result of the phase separation structure and lower degree of crystallinity. Especially, when the PTMG content was 10 mol %, the impact strength of the copolymer reached up to 4.5 times that of PBS. In addition, with more soft segments introduced, the biodegradability of the copolymers became much better than that of PBS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.