Abstract

AbstractLithium−sulfur batteries (LSBs) are regarded as one of the most promising candidates for energy storage devices. However, the severe shuttling effect of soluble polysulfides (PSs) limits its further application. Metal−organic frameworks (MOFs) have emerged as a new kind of sulfur host for their talents in confining and trapping PSs. However, the shuttle effect has not been fully stressed as a significant drawback for most MOFs that leads to sluggish redox kinetics, resulting in low specific capacity and short lifetime, especially at high sulfur loading. In this work, a MOF‐sulfur copolymer (CNT@UiO‐66‐V‐S) is elaborated by copolymerization of sulfur with vinyl functionalized MOFs. Systematic electrochemical experiments and in situ Raman spectroscopy analysis indicate that the cathode exhibits a radical reaction mechanism and can accelerates LiPSs conversion. The CNT@UiO‐66‐V‐S cathode delivers over 100% improved discharge capacity and lowers decay rate at both low and high (5.6 mg cm–2) sulfur loadings compared to the physically mixed MOF/S cathode. The strategy of MOF‐sulfur copolymerization provides a new solution for promoting reaction kinetics and tackling the shuttle effect, and is expected to inspire the design of advanced sulfur hosts applied for high‐performance LSBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.