Abstract

We first report on the copolymerization of sulfur and allyl-terminated poly(3-hexylthiophene-2,5-diyl) (P3HT) derived by Grignard metathesis polymerization. This copolymerization is enabled by the conversion of sulfur radicals formed by thermolytic cleavage of S8 rings with allyl end-group. The formation of a C–S bond in the copolymer is characterized by a variety of methods, including NMR spectroscopy, size exclusion chromatography, and near-edge X-ray absorption fine spectroscopy. The S-P3HT copolymer is applied as an additive to sulfur as cathode material in lithium–sulfur batteries and compared to the use of a simple mixture of sulfur and P3HT, in which sulfur and P3HT were not covalently linked. While P3HT is incompatible with elementary sulfur, the new S-P3HT copolymer can be well dispersed in sulfur, at least on the sub-micrometer level. Sulfur batteries containing the S-P3HT copolymer exhibit an enhanced battery performance with respect to the cycling performance at 0.5C (799 mAh g–1 after 100 cyc...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.