Abstract

AbstractThe photopolymerization efficiency of pyrene (Py), 1‐acetylpyrene (AP), and 1‐(bromoacetyl)pyrene (BP) for copolymerization of n‐butylacrylate (BA) with methylmethacrylate (MMA) was compared. A kinetic study of solution copolymerization in DMSO at 30 ± 0.2°C showed that the Py could not initiate copolymerization even after 20 h, whereas with AP as initiator, less than 1% conversion was observed. However, introduction of a Br in α‐methyl group of AP significantly enhanced the percent conversion. The kinetics and mechanism of copolymerization of BA with MMA using BP as photoinitiator have been studied in detail. The system follows nonideal kinetics (Rp α [BP]0.67[BA]1[MMA]0.98), and degradative solvent transfer reasonably explains these kinetic nonidealities. The monomer reactivity ratios (MRRs) of MMA and BA have been estimated by the Finemann–Ross and Kelen–Tudos methods, by analyzing copolymer compositions determined by 1H‐NMR spectra. The values of r1 (MMA) and r2 (BA) were found to be 2.17 and 0.44, respectively, which suggested the high concentration of alternating sequences in the random copolymers obtained. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 261–267, 2007

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call