Abstract
ABSTRACTIsoprene polymerization and copolymerization with ethylene can be carried out by using cationic half‐sandwich fluorenyl scandium catalysts in situ generated from half‐sandwich fluorenyl scandium dialkyl complexes Flu'Sc(CH2SiMe3)2(THF)n, activator, and AliBu3 under mild conditions. In the isoprene polymerization, all of these cationic half‐sandwich fluorenyl scandium catalysts exhibit high activities (up to 1.89 × 107 g/molSc h) and mainly cis−1,4 selectivities (up to 93%) under similar conditions. In contrast, these catalysts showed different activities and regio‐/stereoselectivities being significantly dependent on the substituents of the fluorenyl ligands in the copolymerization of isoprene with ethylene under an atmosphere of ethylene (1 atm) at room temperature, affording the random copolymers with a wide range of cis−1,4‐isoprene contents (IP content: 64 − 97%, cis−1,4‐IP units: 65 − 79%) or almost alternating copolymers containing mainly 3,4‐IP‐alt‐E or/and cis−1,4‐IP‐alt‐E sequences. Moreover, novel high performance polymers have been prepared via selective epoxidation of the vinyl groups of the 1,4‐isoprene units in the IP‐E copolymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2898–2907
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.