Abstract

In the present work, adaptive orthogonal collocation and a Monte Carlo method are used to compute the molecular weight distributions (MWD) of ethylene/1,9‐decadiene copolymers produced with a constrained geometry catalyst. Predictions from each model are compared to each other and to the experimental MWDs, allowing for the evaluation of relative strengths and weaknesses of each mathematical modeling method. Comparisons with experimental results indicate that the rate of macromonomer incorporation in the growing polymer chains decays with the macromonomer radius of gyration. In all cases, the proposed models are able to fit appropriately the available experimental MWDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.