Abstract

The aim of this work was the study of the high solid contents emulsion copolymerization of styrene and butyl acrylate in semi-batch process. In this context the particle size distribution and its effects on the product viscosity was studied. Copolymerization reactions were carried out in a glass reactor, and recipes with solid contents up to 64 wt.% were used. During each run, samples are periodically taken from the reactor, and analysis are performed to measure the polymer content (monomer conversion) by gravimetry, the concentrations of the residual monomers by head-space gas chromatography, the average particle size by dynamic light scattering, and the particle size distribution by transmission electronic microscopy. The viscosity of the final emulsion is also measured using a Brookfield viscosimeter. By applying operating strategies to nucleate new particles along the process, latexes with bimodal particle size distributions and low viscosities were obtained. A mathematical model was employed for simulating the polymerization process, including the evolution of the particle size distribution along the process, calculated from population balance equations for the particles and the radicals inside the particles. The numerical solution was obtained using the discretized population balance equations by the method of classes and the fixed pivot technique. The model has only two adjustable parameters, the efficiencies for radical capture by micelles and by particles. These two parameters were fitted to the experimental data of one run and used, without further readjustment, for other runs under different conditions. The model results presented satisfactory agreement with the experimental data. Key-words: Emulsion polymerization. High solids contents. Particle size distribution. Mathematical modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call