Abstract

We introduce a new integral invariant for isometric actions of compact Lie groups, the copolarity. Roughly speaking, it measures how far from being polar the action is. We generalize some results about polar actions in this context. In particular, we develop some of the structural theory of copolarity k representations, we classify the irreducible representations of copolarity one, and we relate the copolarity of an isometric action to the concept of variational completeness in the sense of Bott and Sainelson.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.