Abstract
The Hopf dual $H^\circ$ of any Poisson Hopf algebra $H$ is proved to be a co-Poisson Hopf algebra provided $H$ is noetherian. Without noetherian assumption, it is not true in general. There is no nontrivial Poisson Hopf structure on the universal enveloping algebra of a non-abelian Lie algebra. The Poisson Hopf structures on $A=k[x_1, x_2, \cdots, x_d]$, viewed as the universal enveloping algebra of a finite-dimensional abelian Lie algebra, are exactly linear Poisson structures on $A$. The co-Poisson structures on polynomial Hopf algebra $A$ are characterized. Some correspondences between co-Poisson and Poisson structures are also established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.