Abstract

(e, 2e) ionization differential cross sections are presented for incident electron energies ranging from 15 eV to 95 eV above the ionization threshold of the 1b1 molecular state of H2O. Experimental results and theoretical analysis were derived for three energies in a coplanar symmetric geometry, and for three energies in an asymmetric geometry. The experimental data show a wide variation in the cross section over this range of energies, whereas the theoretical analysis carried out using a sophisticated molecular DWBA model, which includes the final state post collision interaction (PCI), shows best agreement at lower energies. The experimental techniques used to collect the data are described here as well as an improved theoretical approach using elastic scattering cross sections to evaluate the accuracy of the distorted waves utilized in the calculation of the ionization cross sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.