Abstract

In all organisms, changing environmental conditions require appropriate regulatory measures to physiologically adjust to the altered situation. Uptake of excess salt in non-mammalian vertebrates having limited or no access to freshwater is balanced by extrarenal salt excretion through specialized structures called 'salt glands'. Nasal salt glands of marine birds are usually fully developed in very early stages of their lives since individuals of these species are exposed to salt soon after hatching. In individuals of other bird species, salt uptake may occur infrequently. In these animals, glands are usually quiescent and glandular cells are kept in a fairly undifferentiated state. This is the situation in 'naive' ducklings, Anas platyrhynchos, which have never been exposed to excess salt. When these animals become initially osmotically stressed, the nasal glands start to secrete a moderately hypertonic sodium chloride solution but secretory performance is meager. Within 48 h after the initial stimulus, however, the number of cells per gland is elevated by a factor of 2-3, the secretory cells differentiate and acquire full secretory capacity. During this differentiation process, extensive surface specializations are formed. The number of mitochondria is increased and metabolic enzymes and transporters are upregulated. These adaptive growth and differentiation processes result in a much higher efficiency of salt excretion in acclimated ducklings compared with naive animals. Receptors and signal transduction pathways in salt gland cells controling the adaptive processes seem to be the same as those controling salt secretion, namely muscarinic acetylcholine receptors and receptors for vasoactive intestinal peptide. This review focusses on signal transduction pathways activated by muscarinic receptors which seem to fine-tune salt secretion in salt-adapted ducklings and may control adaptive growth and differentiation processes in the nasal gland of naive animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.