Abstract

BackgroundCopines are soluble, calcium-dependent membrane binding proteins found in a variety of organisms. Copines are characterized as having two C2 domains at the N-terminal region followed by an "A domain" at the C-terminal region. The "A domain" is similar in sequence to the von Willebrand A (VWA) domain found in integrins. The presence of C2 domains suggests that copines may be involved in cell signaling and/or membrane trafficking pathways.ResultsWe have identified six copines genes in the Dictyostelium discoideum genome, cpnA-cpnF, and have focused our studies on cpnA. CpnA is expressed throughout development and was shown to be capable of binding to membranes in a calcium-dependent manner in vitro. A GFP-tagged CpnA was also capable of binding to membranes in a calcium-dependent manner in vitro. In live wildtype Dictyostelium cells expressing GFP-CpnA, GFP-CpnA was typically found in the cytoplasm without any specific localization to membranes. However, in a small subset of starved cells, GFP-CpnA was observed to bind transiently (typically ~1–10 s) to the plasma membrane and intracellular vacuoles. In some cells, the transient membrane localization of GFP-CpnA was observed to occur multiple times in an oscillatory manner over several minutes. In plasma membrane disrupted cells, GFP-CpnA was observed to associate with the plasma membrane and intracellular vacuoles in a calcium-dependent manner. In fixed cells, GFP-CpnA labeled the plasma membrane and intracellular vacuoles, including contractile vacuoles, organelles of the endolysosomal pathway, and phagosomes.ConclusionOur results show that Dictyostelium has multiple copine homologs and provides an excellent system in which to study copine function. The localization of a GFP-tagged CpnA to the plasma membrane, contractile vacuoles, organelles of the endolysosomal pathway, and phagosomes suggests that CpnA may have a role in the function of these organelles or the trafficking to and from them. In addition, we hypothesize that the observed transient oscillatory membrane localization of GFP-CpnA in a small subset of starved cells is caused by fast calcium waves and speculate that CpnA may have a role in development, particularly in the differentiation of stalk cells.

Highlights

  • Copines are soluble, calcium-dependent membrane binding proteins found in a variety of organisms

  • Our studies have focused on cpnA, the most abundant copine gene cDNA in the Dictyostelium cDNA Sequencing Project database [15]

  • Copines are characterized as having two C2 domains at the N-terminal region followed by an "A domain," similar to the von Willebrand A (VWA) domain found in integrins, in the C-terminal region [1]

Read more

Summary

Introduction

Calcium-dependent membrane binding proteins found in a variety of organisms. The presence of C2 domains suggests that copines may be involved in cell signaling and/or membrane trafficking pathways. Calcium-dependent membrane binding proteins found in a variety of eukaryotic organisms. Many of these interactions between the copine A domains and their target proteins were verified in in vitro pull-down assays. The authors hypothesized that copines may act to localize target proteins to a particular membrane in response to calcium. To test this idea, they used an in vitro assay to show that full-length copines were able to recruit target proteins to membranes in a calcium-dependent manner. In an in vivo assay, Tomsig et al [9] used a dominant negative mutant copine construct consisting of only the A domain to inhibit signaling from the TNF-α receptor in human embryonic kidney 293 cells

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call