Abstract

Since tens of millions of chemical compounds have been accumulated in public chemical databases, fast comprehensive computational methods to predict interactions between chemical compounds and proteins are needed for virtual screening of lead compounds. Previously, we proposed a novel method for predicting protein-chemical interactions using two-layer Support Vector Machine classifiers that require only readily available biochemical data, i.e. amino acid sequences of proteins and structure formulas of chemical compounds. In this article, the method has been implemented as the COPICAT web service, with an easy-to-use front-end interface. Users can simply submit a protein-chemical interaction prediction job using a pre-trained classifier, or can even train their own classification model by uploading training data. COPICAT's fast and accurate computational prediction has enhanced lead compound discovery against a database of tens of millions of chemical compounds, implying that the search space for drug discovery is extended by >1000 times compared with currently well-used high-throughput screening methodologies. The COPICAT server is available at http://copicat.dna.bio.keio.ac.jp. All functions, including the prediction function are freely available via anonymous login without registration. Registered users, however, can use the system more intensively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.