Abstract
It has been thought that clathrin-mediated endocytosis is regulated by phosphorylation and dephosphorylation of many endocytic proteins, including amphiphysin I and dynamin I. Here, we show that Cdk5/p35-dependent cophosphorylation of amphiphysin I and dynamin I plays a critical role in such processes. Cdk5 inhibitors enhanced the electric stimulation–induced endocytosis in hippocampal neurons, and the endocytosis was also enhanced in the neurons of p35-deficient mice. Cdk5 phosphorylated the proline-rich domain of both amphiphysin I and dynamin I in vitro and in vivo. Cdk5-dependent phosphorylation of amphiphysin I inhibited the association with β-adaptin. Furthermore, the phosphorylation of dynamin I blocked its binding to amphiphysin I. The phosphorylation of each protein reduced the copolymerization into a ring formation in a cell-free system. Moreover, the phosphorylation of both proteins completely disrupted the copolymerization into a ring formation. Finally, phosphorylation of both proteins was undetectable in p35-deficient mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.