Abstract
Following an old suggestion of M. Kontsevich, and inspired by recent work of A. Beilinson and B. Bhatt, we introduce a new version of periodic cyclic homology for DG algebras and DG categories. We call it co-periodic cyclic homology. It is always torsion, so that it vanishes in char 0. However, we show that co-periodic cyclic homology is derived-Morita invariant, and that it coincides with the usual periodic cyclic homology for smooth cohomologically bounded DG algebras over a torsion ring. For DG categories over a field of odd positive characteristic, we also establish a non-commutative generalization of the conjugate spectral sequence converging to our co-periodic cyclic homology groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.