Abstract

The current commercial production protocols for Atlantic cod depend on enriched rotifers and Artemia during first-feeding, but development and growth remain inferior to fish fed natural zooplankton. Two experiments were conducted in order to identify the underlying factors for this phenomenon. In the first experiment (Exp-1), groups of cod larvae were fed either (a) natural zooplankton, mainly copepods, increasing the size of prey as the larvae grew or (b) enriched rotifers followed by Artemia (the intensive group). In the second experiment (Exp-2), two groups of larvae were fed as in Exp-1, while a third group was fed copepod nauplii (approximately the size of rotifers) throughout the larval stage. In both experiments, growth was not significantly different between the groups during the first three weeks after hatching, but from the last part of the rotifer feeding period and onwards, the growth of the larvae fed copepods was higher than that of the intensive group. In Exp-2, the growth was similar between the two copepod groups during the expeimental period, indicating that nutrient composition, not prey size caused the better growth on copepods. Analyses of the prey showed that total fatty acid composition and the ratio of phospholipids to total lipids was slightly different in the prey organisms, and that protein, taurine, astaxanthin and zinc were lower on a dry weight basis in rotifers than in copepods. Other measured nutrients as DHA, all analysed vitamins, manganese, copper and selenium were similar or higher in the rotifers. When compared to the present knowledge on nutrient requirements, protein and taurine appeared to be the most likely limiting nutrients for growth in cod larvae fed rotifers and Artemia. Larvae fed rotifers/Artemia had a higher whole body lipid content than larvae fed copepods at the end of the experiment (stage 5) after the fish had been fed the same formulated diet for approximately 2 weeks.

Highlights

  • In aquaculture, the production of Atlantic cod (Gadus morhua) juveniles is based on indoor intensive systems with start-feeding tanks supplied with temperature-controlled seawater and in which the larvae are fed enriched rotifers (Brachionus spp.) at the onset of exogenous feeding

  • This differences in growth occurred in spite of recent improvements in rotifer nutritional quality, especially with respect to lipid and mineral enrichments (Hamre et al, 2013)

  • It should be noted that during the first three weeks of feeding in Exp-1, there was no difference in growth between the groups, and that the greatest difference in growth rates occurred between 22 and 36 dph, i.e., when the intensive group was still being fed only rotifers

Read more

Summary

Introduction

The production of Atlantic cod (Gadus morhua) juveniles is based on indoor intensive systems with start-feeding tanks supplied with temperature-controlled seawater and in which the larvae are fed enriched rotifers (Brachionus spp.) at the onset of exogenous feeding. This may be followed by a period of feeding with enriched brine shrimp (Artemia salinas) before the larvae are weaned onto formulated feed. The proportion of deformed fish is often higher than when the larvae are fed natural zooplankton that consists mainly of copepods (Fjelldal et al, 2009; Imsland et al, 2006). Analyses of stomach content from wild caught cod larvae show that an assemblage of various species and stages of copepods are the most important food items for cod larvae in their natural habitat (Wiborg, 1948; Last, 1978)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call