Abstract

The Cope rearrangements of bicyclo[5.1.0]octa-2,5-diene and its 4-hetero-(aza/oxa/phospha) and 4,8-dihetero analogues were investigated using density functional theory at the B3LYP/6–31+G* level in gas phase. The rearrangements of bicyclo[5.1.0]octa-2,5-diene and its symmetrical 4,8-dihetero analogues followed a concerted mechanism involving synchronous transition states. In other cases, although a concerted mechanism was observed, asynchronous transition states were involved. In the case of bicyclo[5.1.0]octa-2,5-diene, a degenerate Cope rearrangement was expected to occur at room temperature (25°C) due to a low free activation energy (ΔG‡ = 14.46 kcal mol–1). However, under similar conditions, the rearrangement of 4,8-dioxabicyclo[5.1.0]octa-2,5-diene was much slower (ΔG‡ = 23.85 kcal mol–1) and the 4,8-diaza- and diphospha analogues did not undergo Cope rearrangement. The Cope rearrangements of 4-phospha-, 8-aza-, 8-aza-4-oxa-, 8-aza-4-phospha-, and 8-oxa-4-phospha-bicyclo[5.1.0]octa-2,5-dienes were exergonic and were expected to occur spontaneously to form the corresponding products. In contrast, rearrangement of 8-oxabicyclo[5.1.0]octa-2,5-diene, though exergonic, was accompanied by a decrease in entropy, due to which Cope rearrangement would occur much more slowly and a mixture of both valence isomers would be formed. The Cope rearrangements of 4-aza-, 4-oxa-, 4-aza-8-oxa-, 8-phospha-, 4-aza-8-phospha-, 4-oxa-8-phospha-, and 4,8-diphospha-bicyclo[5.1.0]octa-2,5-dienes were endergonic; consequently either no Cope rearrangement would take place or it would occur sluggishly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call