Abstract

Chronic obstructive pulmonary disease (COPD) has been associated with alterations in the brain cortical structure. Nonetheless, the causality between COPD and brain cortical structure has not been determined. In the present study, we used Mendelian randomization (MR) analysis to explore the causal effects of genetic predicated COPD on brain cortical structure, namely cortical surface area (SA) and cortical thickness (TH). Genetic association summary data for COPD were obtained from the FinnGen consortium (N = 358,369; Ncase = 20,066). PRISm summary genetic data were retrieved from a case–control GWAS conducted in the UK Biobank (N = 296,282). Lung function indices, including forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC, were extracted from a meta-analysis of the UK Biobank and SpiroMeta consortium (N = 400,102). Brain cortical structure data were obtained from the ENIGMA consortium (N = 51,665). Inverse-variance weighted (IVW) method was used as the primary analysis, and a series of sensitivity tests were exploited to evaluate the heterogeneity and pleiotropy of our results. The results identified potential causal effects of COPD on several brain cortical specifications, including pars orbitalis, cuneus and inferior parietal gyrus. Furthermore, genetic predicated lung function index (FEV1, FVC and FEV1/FVC), as well as PRISm, also has causal effects on brain cortical structure. According to our results, a total of 15 functional specifications were influenced by lung function index and PRISm. These findings contribute to understanding the causal effects of COPD and lung function to brain cortical structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call