Abstract

COPD is characterized by chronic airway inflammation and remodeling, with serious modifications of the extracellular matrix (ECM). Hyaluronic acid (HA) is an abundant ECM molecule in the lung with various biologic functions that depend on its molecular weight (MW). High-MW HA exhibits antiinflammatory and immunosuppressive effects, whereas low-MW HA is proinflammatory. In this study, we investigated whether acute exacerbations of COPD (AECOPDs), which affect patient quality of life and survival, are associated with altered HA turnover in BAL. We used BAL from patients with stable COPD (n = 53) or during AECOPD (n = 44) matched for demographics and clinical characteristics and BAL from control subjects (n = 15). HA, HA synthase-1 (HAS-1), and hyaluronidase (HYAL) values were determined by enzyme-linked immunosorbent assay, and HYAL activity was determined by HA zymography. The MW of HA was analyzed by agarose electrophoresis. Levels of HA, HAS-1, and HYAL were significantly increased in BAL of patients with stable COPD and during exacerbations compared with control subjects. HYAL activity was significantly increased in BAL of patients with AECOPD, resulting in an increase of low-MW HA during exacerbations. In patients with AECOPD, we also observed a significant negative correlation of HA and HYAL levels with FEV1 % predicted but not with diffusing capacity of lung for carbon monoxide % predicted, indicating that increased HA degradation may be more associated with airway obstruction than with emphysema. AECOPDs are associated with increased HYAL activity in BAL and subsequent degradation of HA, which may contribute to airway inflammation and subsequent lung function decline during exacerbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.