Abstract

We investigated the growth and electronic properties of Co-phthalocyanine (CoPc) molecule deposited on iron film with different structures (pseudomorph-fcc and bcc) and on iron nanowires by scanning tunnelling microscopy and X-ray absorption spectroscopy (XAS). CoPc molecules self-assemble in a two-dimensional (2D) arrangement with the molecular plane parallel to the iron surfaces, and the local order is lost after the first layer. The molecule-ferromagnet interaction causes the broadening of Co and N unoccupied molecular states as well as different electronic distribution of N states as a function of the atomic structure of iron surface. The ferromagnetic coupling between the molecule and the iron film is dominated by the electronic interaction between Co and the first Fe layer. CoPc 2D arrangement turns into 1D by using as a template the iron nanowire grown on a facet surface of oxidized Cu(332) surface. CoPc molecules interact weakly with the iron nanowires manifesting a substantial Co 3dz spectral feature in XAS spectrum and the possibility of a magnetic interaction between Co moment and iron nanowires. Both CoPc 2D and 1D arrangements can open up new interesting scenarios to tune the magnetic properties of hybrid interfaces involving metallorganic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.