Abstract
Abstract Cosmological analyses using galaxy clusters in optical/NIR photometric surveys require robust characterization of their galaxy content. Precisely determining which galaxies belong to a cluster is crucial. In this paper, we present the COlor Probabilistic Assignment of Clusters And BAyesiaN Analysis (Copacabana) algorithm. Copacabana computes membership probabilities for all galaxies within an aperture centred on the cluster using photometric redshifts, colours, and projected radial probability density functions. We use simulations to validate Copacabana and we show that it achieves up to 89% membership accuracy with a mild dependency on photometric redshift uncertainties and choice of aperture size. We find that the precision of the photometric redshifts has the largest impact on the determination of the membership probabilities followed by the choice of the cluster aperture size. We also quantify how much these uncertainties in the membership probabilities affect the stellar mass–cluster mass scaling relation, a relation that directly impacts cosmology. Using the sum of the stellar masses weighted by membership probabilities ($\rm \mu _{\star }$) as the observable, we find that Copacabana can reach an accuracy of 0.06 dex in the measurement of the scaling relation at low redshift for a LSST type survey. These results indicate the potential of Copacabana and $\rm \mu _{\star }$ to be used in cosmological analyses of optically selected clusters in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.