Abstract

Constitutively photomorphogenic 1 (COP1) is an E3 ubiquitin ligase that has been studied extensively in the photomorphogenesis- and light-related processes in Arabidopsis. However, the possible role of COP1 in plant drought stress response remains unknown. Hence, in the present study, the stomatal behavior as one of the key elements in plant dehydration response was investigated in Arabidopsis cop1-4 and pea light-independent photomorphogenesis (lip1) mutants. We observed that water loss rate in the cop1-4 and lip1 detached leaves was significantly much faster than wild-type, resulting from failing to reduce the stomatal aperture by the mutants. But, interestingly, the cop1-4 and lip1 isolated leaves treated with abscisic acid (ABA) as well as cop1-4 and lip1 soil-grown under drought stress could close their stomata as wild-type. Hence, COP1 plays a fundamental role in the regulation of stomatal movements in response to dehydration and its function was conserved during evolution in both Arabidopsis and pea. Further evaluations showed the cop1-4 mutant was not significantly damaged from the oxidative stress derived from soil water limiting conditions when compared to wild-type. Similarly, the up-regulation level of several key stress-responsive genes was relatively lower in cop1-4 than wild-type. Therefore, COP1 might be considered as a potential key regulator of both short-and long-term dehydration response. Multiple stress-related cis-elements were also detected in the COP1 promoter region, which supported its up-regulation in response to drought, salt, and cold stresses. Besides, we figured out the constitutively open stomata of cop1-4 in darkness can be as a result of the reduced AtMYB61 expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call