Abstract

This paper gives an in depth overview on a wave-function based simulation framework (called coos) for modeling ballistic nanotube transistors by solving the effective-mass Schrodinger equation. The framework considers non-parabolic electronic band structure effects, band-to-band tunneling as well as a heterojunction-like model for extended contacts to describe the injection and reception of charge carriers into and from the channel. Special emphasis is put on an efficient and reliable numerical implementation. The applicability of the simulation framework and the necessity to include the aforementioned phenomena are shown by comparing simulation results with experimental data of a $$50\hbox { nm}$$ 50 nm long carbon nanotube transistor (cntfet). The intrinsic transit frequencies and the output characteristics for higher drain-source voltages are predicted and analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.