Abstract

Cationic amidotitanocene complexes [Cp2 Ti(NPhAr)][B(C6 F5 )4 ] (Cp=η5 -C5 H5 ; Ar=phenyl (1 a), p-tolyl (1 b), p-anisyl (1 c)) were isolated. The bonding situation was studied by DFT (Density Functional Theory) using EDA-NOCV (Energy Decomposition Analysis with Natural Orbitals for Chemical Valence). The polar Ti-N bond in 1 a-c features an unusual inversion of σ and π bond strengths responsible for the balance between stability and reactivity in these coordinatively unsaturated species. In solution, 1 a-c undergo photolytic Ti-N cleavage to release Ti(III) species and aminyl radicals ⋅NPhAr. Reaction of 1 b with H3 BNHMe2 results in fast homolytic Ti-N cleavage to give [Cp2 Ti(H3 BNHMe2 )][B(C6 F5 )4 ] (3). 1 a-c are highly active precatalysts in olefin hydrogenation and silanes/amines cross-dehydrogenative coupling, whilst 3 efficiently catalyzes amine-borane dehydrogenation. The mechanism of olefin hydrogenation was studied by DFT and the cooperative H2 activation key step was disclosed using the Activation Strain Model (ASM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call