Abstract

The vertex graph of the Ammann-Beenker tiling is a well-known quasiperiodic graph with an eightfold rotational symmetry. The coordination sequence and coordination shells of this graph are studied. It is proved that there exists a limit growth form for the vertex graph of the Ammann-Beenker tiling. This growth form is an explicitly calculated regular octagon. Moreover, an asymptotic formula for the coordination numbers of the vertex graph of the Ammann-Beenker tiling is also proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.