Abstract

Protonation and alkali- and alkaline-earth-metal coordination by the dipyridine-containing cryptand L have been studied by means of potentiometric and spectroscopic (UV-vis, (1)H NMR) measurements in aqueous solutions. This ligand is constituted by an aliphatic polyamine chain and a coordinating cleft, delimited by two dipyridine units, where the metal ion is lodged. The resulting complexes are characterized by an unusually high stability. The polyamine chain is not involved, or weakly involved, in metal coordination, and facile protonation can occur on the nitrogen atoms of this moiety. Similar coordination features are found in the Eu(III) complex. A fluorescence emission study reveals that the Eu(III) cryptate shows the characteristic visible emission of the metal, due to the intramolecular energy transfer to the metal ion mainly from the lower energy triplet state of the cryptand. On the other hand, the emission intensity is modulated by pH, giving a maximum at neutral pH and decreasing at both acidic and alkaline pH values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.