Abstract

Herein, a coordination polymer gel is proposed for the determination of As(III) in real samples through multispectroscopic techniques viz. spectrophotometry, spectrofluorimetry, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Taguchi L32 (46 21) design and adaptive neuro fuzzy inference system (ANFIS) optimized the controllable factors affecting the extraction yielding an experimental S/N ratio of 39.94 dB. The fluorescence quenching (KSV = 2.63 × 106 L mol−1) was static with photoelectron transfer being the main mechanism confirmed by the density functional theory calculations. The limits of detection (LODs), limits of quantification (LOQs) and linear ranges were 0.038 μg L−1, 0.13 μg L−1 and 1.67–116.67 μg L−1, 0.40 μg L−1, 1.21 μg L−1 and 1.67–33.33 μg L−1, 1.07 μg L−1, 3.24 μg L−1 and 3.32–35.37 μg L−1 for the developed enrichment coupled ICP-AES, spectrophotometry and fluorescence sensing methods. Among these methods, the enrichment - ICP-AES method has the lowest LOD, LOQ and the widest linear range followed by the enrichment - spectrophotometry and fluorescene sensing methods. Spectrofluorimetry offers high sensitivity, selectivity, and possible real time monitoring, spectrophotometry provides a cost-effective and versatile option, while ICP-AES manifests multi-element analysis with high sensitivity and low interference. The developed methods were validated and employed for the successful determination of trace As(III) in real samples. The employment of these methods enhances the overall analytical capability for a wide range of sample types and concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call