Abstract

Iron(II) and nickel(II) [MN6]X2 type complexes have been prepared from 2-(pyrazol-1-yl]pyridine (1pp), 2-(pyrazol-1-yl) imidazoline (pi), 2- (pyrazol-3-yl)pyridine (3pp) and 2,6-bis(pyrazol-3-yl)pyridine ( bpp ). Variable-temperature magnetic and Mossbauer spectral studies establish that [Fe(1pp)3]X2 is low spin and [Fe(pi)3]X2 is high spin over an extended temperature range, while both [Fe(3pp)3]X2 and [Fe( bpp )2]X2 undergo temperature-induced low-spin ↔ high-spin transitions. The nature of the transition depends on the extent of hydration and for salts of both cations the singlet state is generally stabilized as the extent of hydration increases. Hydrogen bonding effects are believed to be responsible for this. For anhydrous [Fe( bpp )2] [BF4]2 the transition is discontinuous and associated with hysteresis with Tc ↓ 173 K for decreasing temperature and Tc ↑ 183 K for increasing temperatures. The transition to the singlet state species is complete at low temperatures provided that the cooling rate is relatively slow. Rapid cooling to 77 K results in the trapping of a fraction of metastable quintet state species. For all other species containing either [Fe(3pp)3]2+ or [Fe( bpp )2]2+ the spin transition is continuous. Spectral data for [NiN6]X2 complexes establish an order of field strengths for the ligands pi < 3pp < 1pp < bpp , which, for the bidentate species only, is consistent with the observed electronic properties of the corresponding [FeN6]X2 complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.